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Abstract. The temperamre dependence of the velocity of sound is calculated for heavy fer- 
mions within a mean field approach. The basic parameters of the periodic Anderron model, 
V and Eo, are taken to be volume dependent. "his leads ta a volume dependence of the 
chemical potential, p ,  the renormalized f level energy. if, the number off dectrons. nf, and ule 
renormalized hybridization V .  These eff& are all included in the calculation of the tempemure 
dependence of the sound velccity. 

1. Introduction 

In recent years a lot of interest has been devoted to heavy-fermion systems (ws). It is 
known that ws show not only very interesting anomalies of their electronic properties 
(Fulde et al 1988, Evans er a1 1989) but also pronounced instabilities in the temperature and 
magnetic field behaviour of the lattice properties like elastic constants, thermal expansion, 
and magnetostriction (Thalmeier and Liithi 1991, Thalmeier and Fulde 1986, Wojciechowski 
1986, Gehring and Wojciechowski 1992, Niksch et a1 1980, Weber er ul 1987, Liithi and 
Yoshizawa 1987, Harigaya and Gehring 1993). 

Some systems, namely Upt,, CeAl3, CeCus, CeRuzSiz, show a sharp depression in 
the longitudinal modes of the elastic constants at low temperatures while the transverse 
modes pass through a maximum. These observed step anomalies in the longitudinal modes 
are especially important as they provide a way of constructing the B-T phase diagram 
by varying both the temperature and the magnetic field (Bruls et a1 1990). All these 
results indicate that the coupling of the heavy electrons with the longitudinal phonons plays 
an important role within the microscopic structure of the heavy-fermion state. Indeed, it 
has been proposed that this mechanism is responsible for heavy-fermion superconductivity 
(Razafimandimby et al 1984, Gehring and Major 1994). Here, we shall only concern 
ourselves with the nature of the elastic instabilities. In particular we shall consider the 
sound velocity for both the rare earth and the uranium HFS. 

The coupling of long-wavelength longitudinal phonons to the heavy quasiparticles 
originates in the extreme volume dependence of the system's effective Kondo temperature 
TK or spin fluctuation temperature (Fulde et ul 1988) which defines a new energy scale for 
the heavy-fermion systems. Both the hybridization between the f electron and conduction 
electrons and the effective f electron energy level depend upon TK. Thus, they are also 
strongly dependent upon the volume strain associated with the lattice. 

One can also consider the effects of distortion in a cubic material including crystalline 
field splitting and calculate the linear susceptibility with respect to the crystalline field 
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splitting. This approach gives a downward dip of the elastic constants (Harigaya and 
Gehring 1993, 1994) which appears at a temperature of the order of the crystalline field 
splitting but much larger than the Kondo temperature. 

In this paper the resulting electron-phonon coupling is characterized by the Griineisen 
parameter. A concept of the Griineisen parameter coupling in HFS allows us to describe the 
experimental anomalies of the lattice properties l i e  thermal expansion and magnetostriction 
constants at temperatures which are very low in comparison with TK. At higher temperatures, 
however, theoretical results are at variance with the experiment (Thalmeier and Liithi 1991). 

In order to obtain the sound velocity at both low and high temperatures we propose 
an approach based on a mean field version of the Anderson model (Coleman 1984). It is 
known that the mean field approximation (MFA) is sufficient to extrapolate between the low- 
and high-temperature regimes yielding, for example, enhanced Pauli-like and Curie-Weiss 
susceptibilities for the low and high temperatures, respectively which is in good qualitative 
agreement with experiment (Rasul and Desgranges 1986, Evans et al 1989, Gehring et al 
1994). 

We want to consider to what extent this approximation can be successful in describing 
the sound velocity and ultrasonic attenuation at finite temperatures. 

We derive the electron-phonon coupling Hamiltonian resulting from a volume 
dependence of the bare hybridization strength and bare position of the f level. These 
two volume dependence quantities together with the width of the conduction electron band, 
the bare hybridization strength and the bare position of the f level are the model parameters. 
A similar Hamiltonian has been derived and examined by Keller et al (1990) at T = 0. 

All electronic quantities are determined within the MFA for slave bosons and finally the 
sound velocity is obtained from the RpA like procedure for the phonon self-energy. The 
quasiparticlephonon interaction considered within these approaches changes considerably 
below and above TK. Below TK it is the heavy quasiparticles which directly couple to the 
phonons, through the Griineisen parameter. However, above TK the resident f electrons are 
well localized so that they feel the lattice deformation via the electric field that surrounds 
them. 

We shall show that even for one electronic Griineisen parameter we obtain the dip of 
the elastic constant at finite temparature for both 4f and 5f WS. 

2. Hamiltonian 

Our starting point is the Anderson lattice Hamiltonian in the second quantized representation: 

where i is the site label. The N-fold degeneracy of both bands is labelled by m. Here, 
~k is the conduction band dispersion relation, EO is the bare f level energy; V is the bare 
hybridization term, which is usually assumed to be independent of k and m. We assume the 
same degeneracy for both c and f electrons to avoid a complicated form of the hybridization 
matrix elements (Hewson 1993). In our approach the hybridization matrix reduces to one 
parameter only. This makes it possible to calculate the sound velocity, as well as all 
other thermodynamic quantities (Evans et al 1989) taking the minimum number of initial 
parameters. It is worth mentioning that this simplified model possesses a 1,” expansion 
analogous to that in the single impurity problem (Millis and Lee 1987). 

Moreover, we neglect the volume dependence of the conduction electron energy (for 
instance, it can be incorporated into the bare elastic constant), and therefore the degeneracy 
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of the conduction electrons is not a crucial factor in determining the sound velocity. 
The large local Coulomb repulsion parameterized by U can be eliminated by introducing 

the slave boson technique (Coleman 1984). The mean field approximation for the slave 
boson operators gives the following effective Hamiltonian: 

where & and r are the renormalized 4f level and the mean value of the boson field operator 
(r = c). The mean field approximation leads to the following three coupled integral 
equations for nf,  & and the chemical potential j~ (Evans et al 1989): 

where EO is the bare f electron energy, f ( x )  is the Fermi function, W is the conduction 
electron band width, pa (= 1/NW) is the conduction electron density of states, V 2  = 
( V & - s ~ c c  is the bare hybridization and v2 = (1 -nf)V’ is the effective hybridization. 
ET are the dispersion relations of  the upper (+) and lower (-) quasiparticle energy bands. 

In the following we want to derive the quasiparticlephonon interaction Hamiltonian 
which results from the volume dependence of the bare parameters Eo and V .  We expand 
therefore as 

The volume strain q(u) can be expressed in terms of phonon creation and annihilation 
operators: 

where M ,  NO, oq and Ri are the ion mass, the number of sites, the phonon dispersion and 
the ion position, respectively. 
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The derivatives a&/aq(u) and aG/as(u) may be written in terms of aEo/aq(u) = y1 
and a v i a m  = y1 a~ 

a Ef a q  ai.r 
- n- + Y2- aEo av ~- 

a Q  aB a? - = n- + y1-. 
aq(vi) aEo av 

From the MFA equations we can see that C, f and nf depend on Eo and V. Thus we obtain 

The numerical plots of the derivatives of equation (IO) are shown in figures 1 and 2. 

1.1 7 

-0.3 
O!O 0.4 0.8 1.2 1.6 2 , i '  2.41 

T/~K 

Figure 1. The lemperature dependence of an+3Eo 
(solid line) and BqIaEO (dashed line) for EO = 
-0.5 eV. V = 1.0 eV. W = 10 eV and N = 6. 

-0.31 ' ' - ' 1 
0.0 0.5 0.6 1.2 1.6 2.0 2.4 

r/Tr 
F i p  2. The temperalure dependence of a n f p V  
(solid line) and acf/rlaV (dashed line) The input 
parameters are the Same as those in figure 1. 

The electron-phonon interaction is then obtained by substituting equations (8)-(11) 
into the slave boson Hamiltonian. This contains two separate components: an expression 
containing the total electronic energy of the system, given by the original Hamiltonian 
(Z), and an electron-phonon term (for clarity we neglect the volume dependence of the 
conduction electron energy) 

where 

The total Hamiltonian is then given by the sum of these terms and an expression for 

Hph = WqbAbq (13) 

the free phonon energy of the system, 

4 

where oq is simply the phonon energy. Thus, the total Hamiltonian 

HT = Ha -k Hph -k f&h. (14) 
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We now perform a Bogoliubov transformation which leads to a new Hamiltonian given in 
terms of two quasiparticle bands, and the phonon coupling between them. The lower- (a) 
and upper- (B) band quasiparticles are given by the usual expressions, 

(15) 

(16) 

t t &, = X k f k m  + Y k C h  

P l m  = - Y k f k m  + Xkckm.  
t t 

The coefficients xkand y k  can be found by simple algebra, 

(17) 

(18) 

Upon substitution, these expressions diagonalize the Hamiltonian (2) into quasiparticle 

1 (Ek - Ef) X k  = -- A('+/-- 
(&& - &)' + 4vz 

(Ek - gf) )I". 

energy bands: 
Hqp = E.&~&akm + C E ~ , , , P ~ , S k m  (19) 

k k 

where E.& and Ef,,, are the lower- and upper-heavy-fermion-band energies given by 
equation (6). 

The quasiparticlephonon interaction term takes on the following form: 

An extension to a model in which direct f-f hopping and an external magnetic field 
are included is straightforward. The main effect of this extension is to renormalize the 4f 
energy: er + er + hm + P E k ,  where P = (1 - nf)l /W and h and t are the magnetic field 
strength and the bare f-f hopping, respectively. 
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3. The phonon Green's function 

The phonon Green's function is defined as 

D(n> = ((YqlY-4)) (22) 
where (( I ))stands for the retarded Green's function and Yq = b, + b f .  

rewrite the function in the following way: 
In order to calculate this, we cany out an RPA-like decoupling procedure. We first 

(23) 

(24) 

(25) 

0, 
0) = -(Q -~Dd 

0 

where 

DI = ((bqlb;)) Dz = ((kqlb-q)).  t 

The equation of motion for the retarded phonon Green's function is given by 
d(AlB) )  = ([A, Bl) + ( (14  HTIIB)). 

Using this we find 

As we are dealing with the phonon energy which is less than the hybridization gap we 
neglect the interband terms. 

The higher-order Green's functions are 
t 

t 
(28) 

(29) 

g1 = 

gz = ((ak-qmakmlb-q)) 

Here i = 1 for biand i = 2 forb- (b- 
at and 01 with the upper ones, ,@ ando, we get a similar expression for gj. 

quasiparticlephonon interaction and perform the following RPA decoupling procedure: 

b). If we replace the lower quasiparticle operators 

To obtain the phonon self-energy we restrict ourselves to second order in the 

(33) 

(34) 

((akun_,ak-q.mYp.lbaq)) t 5 &=q,{(b*q ~b' *q ) ) (ak -qmak-qm)  t 

((ak+q-Prm~kmY~ t I&)) ( ( G q  I G q ) )  (~lvnakkm) t 

where 



Heavy-fennion compounds within MFA 9713 

(Replacing a by fl  we perform a similar decoupling procedure.) 

Green's function DO = 2wq/(w2 - m i )  and the phonon self-energy n(q, a), 

where 

Thus finally we can express the phonon Green's function in terins of the free phonon 

D(q,  0) = 00 + Don(q, @)Do (37) 

where f is the Fermi function and the value of w is taken to have a small positive imaginary 
Part. 

Equating D(q,  w)-' to zero defines a renormalized phonon energy and yields the follo- 
wing relation: 

wz - m i  - 2Reil(q, o)wq = 0. (39) 
The static approximation to the real part of the phonon self-energy Re ll (q, w )  is then 
applied and the long-wavelength limit taken. We then find 

The change in sound velocity As = s - so is then calculated from the relation 

(41) 
1 
4 

As = - Ren(q,  w = 0) 

where SO is the bare sound velocity. 
We take the degeneracy factor N = 6 (the total number of electrons per site n = 2) 

because this is appropriate to describe the J = $ multiplet in ceriuni compounds. Then the 
Fermi level does not move into the hybridization gap at very low temperatures. 

Our approach can be applied to any value of N . As we use the square conduction 
electron density of states, po = l /NW then NpoVz is independent of N and therefore the 
effective Kondo temperature TK will depend on V, W and Eo only. Of course, there is a 
general problem of the validity of the Anderson model for heavy-fermion systems for large 
values of N .  The hope is that the extrapolation to large N provides a reasonably good 
description of the basic physics (Hewson 1993, Millis and Lee 1987). The problem of the 
degeneracy is also important if we want to consider the spin-orbit and crystal field effects. 
These effects can be included in our approach in a similar way to'that developed by Evans 
(1992). 

The crystal field effects in the case of the elastic anomaly of heavy-fermion systems 
were considered by Harigaya and Gehring (Harigaya and Gehring 1993) where the shear 
modulus was obtained from the linear susceptibility with respect to the crystal field splitting. 
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The formalism was also based on the Anderson model and was independent of the real 
band structure and degeneracy structure yielding a good description of the low-temperature 
anomalies for heavy-fermion systems. 

The ultrasonic attenuation coefficient (a) can be obtained from the formula 

(42) 
1 

(Y = - Im n(q, w).  
S 

We can express the longitudinal elastic constant in terms of the change in sound velocity as 

where p is the mass density and CO is the bare elastic constant. The temperature dependence 
of the elastic constant is shown in figure 3. 

AC 2pCoA~ (43) 

9.95 

9.90 A A  
A A A A ~  

9.85 

2 9.80 
0 

2 9.75 
0 

U 

._ ;; 9.70 

G3 9.65 

9.60 

9.55 ' 1 
0.0 0.4 ~ 0.8 1.2 1 .6 2.0 

T/TK 
Figum 3. The temperahre dependence of the longitudinal elastic constant c (I0"erg ~ m - ~ )  for 
rare eath systems, r. = 0.015 eV. The remaining parameters are the same as those in figures 
1 and 2. Solid line: the lowerquasiparticleband contribution. Dashed line: the lower- and 
upperquasiparticle-band mntributions. Triangles: experimental data of Niksch et a1 (1980) for 
c e A l 3 .  

In order to compare ow quasiparticle-phonon interaction with that obtained by Keller et 
al (1990) for the rare earth systems we need to calculate only the first term of equation (20) 
i.e. we have to evaluate G1 and Gz at T = 0. In the mean field approach it is easy to get 
analytical expressions of all physical quantities in terms of the bare parameters EO, V, W 
and the degeneracy factor N .  

We obtain the following expressions for GI and GZ (see the appendix) (q -+ 0): 

(44) 

(45) 

(46) 

(47) 

141 x& aEf 
av Gi = J--- 2NoMwq 

a i r  

1 - = -- -- av 2-nf 

where 

(48) 
2nz(1 - nr)(Eo - &) xv = 

N P , v ~ ( ~ + K )  ' 
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These results differ from that obtained by Keller et al (1990) because of Xv and K, 
which come from the hybridization dependence of the chemical potential. This dependence 
is very important in the lattice case as was shown by Evans et al (1989). 

Using the mean field results of 

x: z 1 
X k y k  z F/ w 

neglecting Xv and putting K = 0 (see the appendix, (A3) and (A4)) we deduce 

Therefore Keller's result is only of the order of TZ. In our case there in no cancellation of 
of the two contributions GI and G2 in the leading order in TK. This result is independent 
of N in the mean field aproximation. 

We can also use the zero-temperature mean field solutions (Rasul and Harrington 1987) 
to derive a.&/aV and aV/aV for uranium systems. We thus find 

and 

where 

(52) 
1/V - W(& - E0)/V3 

av 1 - 2nf(3 - nr)W2/3V2 

We can simplify the integral in equation (40) further by employing the linear 
approximation to the Fermi function (Hong et nl 1993). This in fact makes the evaluation 
easier and yet still maintains the essential trends we are concerned with. We then have, 
combining expressions (40) and (43), 

where the -1/2A terms come from differentiating the linear Fermi function with respect to 
temperature and A = 4Tln(2). N(&) is the quasiparticle density of states. The numerical 
plots for the uranium systems in the linear approximation are shown in figures 4 and 5. 
A good agreement is found with the experimental findings of Yoshizawa et al (1985). As 
we increase the degeneracy, N, the accuracy of the theoretical plots does seem to improve. 
This is indeed what we would expect from a mean field theory essentially zeroth order in the 
expansion parameter 1 / N .  Moreover, larger N causes the low-temperature dip to deepen. 
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Figure 4. The elastic constant as a function of temperature, with (dashed line) and without 
(solid line) the upper-quasiparticle-band contribution. The input parameters here were W = 10 
eV, V = 1 eV, N = 10 and Eo = -0.4 eV. Circles: exprimental data of Yoshizawa er a1 
(1985) for uPt3. 
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Figure 5. The elastic mllStant e (IO'lerg ~ m - ~ )  as a function of tempemure. This was evaluated 
for different values of degeneracy, N. The input parameters =e the same as tho% in figure 4. 

4 . ~  Discussion 

In this paper we discuss the role of the volume dependence of the bare hybridization and 
bare 4f energy on the longitudinal sound velocity in heavy-fermion compounds. Recently 
it has been shown (Evans et al 1989) that the MFA solutions not only describe correctly 
the low-temperature Fermi liquid behaviour but also are sufficient for a discussion of the 
high-temperature region. Also, the MFA solutions extrapolate smoothly between the two 
regimes. The latter results from the fact that for the lattice case the Fermi energy decreases 
with temperature (see the appendix). Hence nf + 1 at higher temperature than for an 
impurity case. 

It would seem that the slave boson mean field theory is quite able to incorporate the 
processes which couple the lattice vibrations with the anomalously heavy electrons. Again 
we see that the changing chemical potential is a crucial factor within the lattice model: 
the inclusion of its temperature dependence leads to the negative feedback effect which 
extends the range of mean field theory well beyond TK, while the inclusion of its volume 
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dependence yields a more accurate description of the underlying elastic properties than has 
been achieved by previous approaches. 

The electron-phonon interaction resulting from the volume dependence of the 4f level 
(EO) and the bare hybridization strength ( V )  yields two different parameters, namely y, and 
Y2.  

Also, we take into account an additional term coming from the implicit volume 
dependence of the renormalized hybridization sixength through the number of 4f electrons 
per site (nf). This term is necessary for obtaining the sound velocity in the same form 
that is yielded when the sound velocity is calculated  directly from the free energy (Fulde 
et al 1988). It should also be emphasized that this term is influenced strongly by 'the bare 
hybridization dependence on the 4f occupation number (nf), described by the derivative of 
nf with respect to V and cannot be neglected in comparison with a&/a EO and a&/aV which 
are usually very small. The results are shown in figures 1 and 2 where we have plotted 
a&/aEo, anf/aEo and aZf/aV, anf/aV against temperature divided by TK (the parameters 
W = 10 eV, V = 1 eV and Eo = -0.5 eV give TK = 38 K) . In spite of the small values 
of the derivatives (see figures 1 and 2 they play an important role. At low temperatures 
they lead to the decreasing of the elastic constant. Thus we obtain a minimum of the elastic 
constant at finite temperature because the elastic constant increases with the temperature 
and reaches its bare value at high temperature. 

From figures 3, 4 and 5 it is seen that there is a minimum of the elastic constant at 
about one quarter of the Kondo temperature TK, defined at T = 0 K. This is consistent 
with the experimental data concerning the elastic constant for CeAl3 (Nisch et al 1980, 
see figure 3) and UPt3  (Yoshizawa er al 1985, see figure 4). However, as it is difficult 
to fit our results to experimental data €or the whole range of temperatures, we can fit our 
results either at low (see figure 3) or high (see figure 4) temperatures. Changing the input 
parameters we can fit CeAl3 and W t 3  data at high and low temperatures, respectively. 

The value of this paper is in showing the origin of the dip in the elastic constant. The 
detailed fitting was disappointing, possibly because we had no underlying anharmonicity 
data to include in the fit. These calculations show that the minimum appears if, according 
to the mean field equations, the Fermi energy is allowed to change with temperature. 

Since in other heavy-fermion systems such as CeCus, CeRuzSiZ, the minimum is not 
so distinct, or even not present,'we assume, on the basis of our results, that the diminution 
or even vanishing of the minimum can be a consequence of the reduction of the negative 
feedback effect due to the local screening cloud in these materials (Newns and Read 1987). 
This can mean that the screening effects play a more important role in these componds than 
they do in CeAl3 or IJE't3 where the dip of the elastic constants is observed. As it is very 
difficult to include the screening effects within our approach, we have neglected them and 
therefore we am not able to estimate the role they play in the anomalous behaviour of the 
temperature dependence of the elastic constant. 
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Appendix 

In this appendix we calculate GI and Gz terms defined in equation (20) for yl = 0 and at 
T = 0. For this purpose we only need to evaluate two derivatives aZf/aV and a?f/aV. 

To obtain a proper quasipdcle-phonon interaction for a lattice case we have to include 
the hybridization dependence of the chemical potential p. In the mean field and at T = 0 p 
can be obtained from the equation 

(-41) n = n r f  N@(p - E-)  

where 

(N - l ) W  +&- (A2) 

and n,  nf, N. po, are the total number of the electrons, the number of f electrons, the 
degeneracy factor and the conduction elemon density of states. respectively. Hence 

X v  = V and 

2nf(l -nf)(Eo -&) 
NpoV3(1 + E )  

X" = 

where 

The same result can be obtained from the approximate formula p = W(l - nf). 
Using two equivalent definitions of the Kondo temperature 

TK = I f  - /.I, (A61 

and 

TK = W e x p 1 ( W N ~ o V ~ l  (A7) 

we get 

1 --xv. av 2-nf V NPO 

Similarly, evaluating a?/aV we obtain 

where r = m. 
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